博客
关于我
【Lintcode】266. Expect Distance
阅读量:214 次
发布时间:2019-02-28

本文共 955 字,大约阅读时间需要 3 分钟。

题目地址:

有个人困在了一个山洞 A A A,从山洞 A A A出发有两条路,一条路走 x x x千米,会回到山洞 A A A,另一条路走 2 2 2千米,会到山洞 B B B;从山洞 B B B出发也有两条路,一条路走 y y y千米,会到山洞 A A A,另一条路走 z z z千米会到山洞的出口 C C C。问他走出山洞的期望路程。他在山洞选择哪条路走的概率都是 1 2 \frac{1}{2} 21

X X X是从 A A A走到出口的距离, Y Y Y是从 B B B走到出口的距离,由条件期望公式得: E [ X ] = 1 2 ( x + E [ X ] ) + 1 2 ( 2 + E [ Y ] ) E [ Y ] = 1 2 ( y + E [ X ] ) + 1 2 z E[X]=\frac{1}{2}(x+E[X])+\frac{1}{2}(2+E[Y])\\E[Y]=\frac{1}{2}(y+E[X])+\frac{1}{2}z E[X]=21(x+E[X])+21(2+E[Y])E[Y]=21(y+E[X])+21z计算得: E [ X ] = 2 x + y + z + 4 E[X]=2x+y+z+4 E[X]=2x+y+z+4代码如下:

public class Solution {       /**     * @param x: the distance from cave A to cave A.     * @param y: the distance from cave B to cave B.     * @param z: the distance from cave B to exit C.     * @return: return the expect distance to go out of the cave.     */    public int expectDistance(int x, int y, int z) {           // write your code here.        return 2 * x + y + z + 4;    }}

时空复杂度 O ( 1 ) O(1) O(1)

转载地址:http://txcs.baihongyu.com/

你可能感兴趣的文章
Linux下的系统监控与性能调优:从入门到精通
查看>>
LiveGBS user/save 逻辑缺陷漏洞复现(CNVD-2023-72138)
查看>>
Mysql Can't connect to MySQL server
查看>>
MySQL InnoDB引擎的锁机制详解
查看>>
MySQL Workbench安装教程以及菜单汉化
查看>>
MySQL Xtrabackup 安装、备份、恢复
查看>>
MySQL – 导出数据成csv
查看>>
MySQL 中文问题
查看>>
mysql 优化器 key_mysql – 选择*和查询优化器
查看>>
MySQL 优化:Explain 执行计划详解
查看>>
mysql 修改默认字符集为utf8
查看>>
Mysql 共享锁
查看>>
MySQL 内核深度优化
查看>>
mysql 写入慢优化
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>